Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Int J Infect Dis ; 142: 106998, 2024 May.
Article in English | MEDLINE | ID: mdl-38458420

ABSTRACT

OBJECTIVES: Following the alert of echovirus 11 (E-11) infection in neonates in EU/EEA Member States, we conducted an investigation of E-11 circulation by gathering data from community and hospital surveillance of enterovirus (EV) in northern Italy from 01 August 2021 to 30 June 2023. METHODS: Virological results of EVs were obtained from the regional sentinel surveillance database for influenza-like illness (ILI) in outpatients, and from the laboratory database of ten hospitals for inpatients with either respiratory or neurological symptoms. Molecular characterization of EVs was performed by sequence analysis of the VP1 gene. RESULTS: In our ILI series, the rate of EV-positive specimens showed an upward trend from the end of May 2023, culminating at the end of June, coinciding with an increase in EV-positive hospital cases. The E-11 identified belonged to the D5 genogroup and the majority (83%) were closely associated with the novel E-11 variant, first identified in severe neonatal infections in France since 2022. E-11 was identified sporadically in community cases until February 2023, when it was also found in hospitalized cases with a range of clinical manifestations. All E-11 cases were children, with 14 out of 24 cases identified through hospital surveillance. Of these cases, 60% were neonates, and 71% had severe clinical manifestations. CONCLUSION: Baseline epidemiological data collected since 2021 through EV laboratory-based surveillance have rapidly tracked the E-11 variant since November 2022, alongside its transmission during the late spring of 2023.


Subject(s)
Enterovirus Infections , Enterovirus , Virus Diseases , Child , Infant, Newborn , Humans , Infant , Enterovirus/genetics , Sentinel Surveillance , Inpatients , Enterovirus Infections/diagnosis , Enterovirus B, Human/genetics , Italy/epidemiology , Hospitals , Phylogeny
2.
Viruses ; 15(10)2023 09 23.
Article in English | MEDLINE | ID: mdl-37896765

ABSTRACT

(1) Background. Exploring the evolution of SARS-CoV-2 load and clearance from the upper respiratory tract samples is important to improving COVID-19 control. Data were collected retrospectively from a laboratory dataset on SARS-CoV-2 load quantified in leftover nasal pharyngeal swabs (NPSs) collected from symptomatic/asymptomatic individuals who tested positive to SARS-CoV-2 RNA detection in the framework of testing activities for diagnostic/screening purpose during the 2020 and 2021 winter epidemic waves. (2) Methods. A Statistical approach (quantile regression and survival models for interval-censored data), novel for this kind of data, was applied. We included in the analysis SARS-CoV-2-positive adults >18 years old for whom at least two serial NPSs were collected. A total of 262 SARS-CoV-2-positive individuals and 784 NPSs were included: 193 (593 NPSs) during the 2020 winter wave (before COVID-19 vaccine introduction) and 69 (191 NPSs) during the 2021 winter wave (all COVID-19 vaccinated). We estimated the trend of the median value, as well as the 25th and 75th centiles of the viral load, from the index episode (i.e., first SARS-CoV-2-positive test) until the sixth week (2020 wave) and the third week (2021 wave). Interval censoring methods were used to evaluate the time to SARS-CoV-2 clearance (defined as Ct < 35). (3) Results. At the index episode, the median value of viral load in the 2021 winter wave was 6.25 log copies/mL (95% CI: 5.50-6.70), and the median value in the 2020 winter wave was 5.42 log copies/mL (95% CI: 4.95-5.90). In contrast, 14 days after the index episode, the median value of viral load was 3.40 log copies/mL (95% CI: 3.26-3.54) for individuals during the 2020 winter wave and 2.93 Log copies/mL (95% CI: 2.80-3.19) for those of the 2021 winter wave. A significant difference in viral load shapes was observed among age classes (p = 0.0302) and between symptomatic and asymptomatic participants (p = 0.0187) for the first wave only; the median viral load value is higher at the day of episode index for the youngest (18-39 years) as compared to the older (40-64 years and >64 years) individuals. In the 2021 epidemic, the estimated proportion of individuals who can be considered infectious (Ct < 35) was approximately half that of the 2020 wave. (4) Conclusions. In case of the emergence of new SARS-CoV-2 variants, the application of these statistical methods to the analysis of virological laboratory data may provide evidence with which to inform and promptly support public health decision-makers in the modification of COVID-19 control measures.


Subject(s)
COVID-19 , Adult , Humans , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19 Vaccines , RNA, Viral , Retrospective Studies , Pharynx
3.
Diagn Microbiol Infect Dis ; 107(4): 116070, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37714081

ABSTRACT

Since the beginning of the pandemic, SARS-CoV-2 has shown genetic variability. All the variants that have sustained pandemic waves have shown several mutations, especially in the Spike protein that could affect viral pathogenesis. A total of 15,729 respiratory samples, collected between December 2020 and August 2022, have been included in this study. We report the circulation of SARS-CoV-2 variants in the Lombardy region, Italy, in a 2-year study period. Alpha, Delta, and Omicron variants became predominant causing the majority of cases whereas Beta or Gamma variants mostly caused local outbreaks. Next-generation sequencing revealed several mutations and few deletions in all of the main variants. For example, 147 mutations were observed in the Spike protein of Omicron sublineages; 20% of these mutations occurred in the receptor-binding domain region.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Disease Outbreaks
4.
Sci Total Environ ; 902: 166539, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37625729

ABSTRACT

Wastewater-based epidemiology (WBE) was conducted to track Enteroviruses (EVs) circulation in the Milan metropolitan area (Northern Italy) during Covid-19 pandemic (March 2020-December 2022). 202 composite 24-hour wastewater samples (WWSs) were collected weekly from March 24, 2020, to December 29, 2022 at the inlet of two wastewater treatment plants (WWTP) in Milan (1.5 million inhabitants). EV-RNA was quantified and molecular characterization of non-polio EVs (NPEV) was performed by Sanger sequence analysis. Data from WWS were matched with virological data collected in the framework of Influenza-Like Illness (ILI) surveillance in the same place and time. EV-RNA was identified in 88.2 % of WWSs. The peak in EVs circulation was observed in late August 2020 (upon conclusion of the first national lockdown), in late August 2021, and in mid-April 2022. EV-RNA concentration in WWS (normalized as copies/d/1000 people) at peak of circulation presented a yearly increase (2020: 2.47 × 1010; 2021: 6.81 × 1010; 2022: 2.14 × 1011). This trend overlapped with trend in EV-positivity rate in ILI cases, expanded from 21.7 % in 2021 to 55.6 % in 2022. EV trends in WWS preceded clinical sample detections in 2021 and 2022 by eight and five weeks, respectively, acting as an early warning of outbreak. Although sequencing of EV-positive WWSs revealed the presence of multiple EV strains, typing remained inconclusive. Molecular characterization of EVs in clinical samples revealed the co-circulation of several genotypes: EV-A accounted for 60 % of EVs, EV-B for 16.7 %, EV-D68 for 23.3 %. EVs were circulating in Milan metropolitan area between March 2020 and December 2022. The epidemiological trends unfolded the progressive accumulation of EV transmission in the population after removal of Covid-19 restrictions. The increased circulation of EVs in 2021-2022 was identified at least 35 days in advance compared to the analysis of clinical data. The inconclusive results of Sanger sequencing lookout for improvement and innovative molecular approaches to deepen track EVs.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Humans , Wastewater-Based Epidemiological Monitoring , Pandemics , COVID-19/epidemiology , Communicable Disease Control , Enterovirus Infections/epidemiology , Wastewater , RNA , Phylogeny
5.
Molecules ; 28(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36985820

ABSTRACT

Lysozyme (E.C. 3.2.1.17), an about 14 kDa protein and pI 11, widely spread in nature, is present in humans mainly in milk, saliva, and intestinal mucus as a part of innate defense mechanisms. It is endowed with antimicrobial activity due to its action as an N-acetylmuramidase, cleaving the 1-4ß glycosidic linkage in the peptidoglycan layer of Gram-positive bacteria. This antimicrobial activity is exerted only against a limited number of Gram-negative bacteria. Different action mechanisms are proposed to explain its activity against Gram-negative bacteria, viruses, and fungi. The antiviral activity prompted the study of a possible application of lysozyme in the treatment of SARS-CoV-2 infections. Among the different sources of lysozyme, the chicken egg albumen was chosen, being the richest source of this protein (c-type lysozyme, 129 amino acids). Interestingly, the activity of lysozyme hydrochloride against SARS-CoV-2 was related to the heating (to about 100 °C) of this molecule. A chemical-physical characterization was required to investigate the possible modifications of native lysozyme hydrochloride by heat treatment. The FTIR analysis of the two preparations of lysozyme hydrochloride showed appreciable differences in the secondary structure of the two protein chains. HPLC and NMR analyses, as well as the enzymatic activity determination, did not show significant modifications.


Subject(s)
COVID-19 , Muramidase , Humans , Muramidase/chemistry , Hot Temperature , SARS-CoV-2/metabolism , Gram-Negative Bacteria/metabolism , Antiviral Agents/pharmacology
6.
BMC Infect Dis ; 23(1): 134, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882698

ABSTRACT

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infections worldwide. While historically RSV research has been focused on children, data on RSV infection in adults are limited. The goal of this study was to establish the prevalence of RSV in community-dwelling Italian adults and analyze its genetic variability during the 2021/22 winter season. METHODS: In this cross-sectional study, a random sample of naso-/oropharyngeal specimens from symptomatic adults seeking for SARS-CoV-2 molecular testing between December 2021 and March 2022 were tested for RSV and other respiratory pathogens by means of reverse-transcription polymerase chain reaction. RSV-positive samples were further molecularly characterized by sequence analysis. RESULTS: Of 1,213 samples tested, 1.6% (95% CI: 0.9-2.4%) were positive for RSV and subgroups A (44.4%) and B (55.6%) were identified in similar proportions. The epidemic peak occurred in December 2021, when the RSV prevalence was as high as 4.6% (95% CI: 2.2-8.3%). The prevalence of RSV detection was similar (p = 0.64) to that of influenza virus (1.9%). All RSV A and B strains belonged to the ON1 and BA genotypes, respectively. Most (72.2%) RSV-positive samples were also positive for other pathogens being SARS-CoV-2, Streptococcus pneumoniae and rhinovirus the most frequent. RSV load was significantly higher among mono-detections than co-detections. CONCLUSION: During the 2021/22 winter season, characterized by the predominant circulation of SARS-CoV-2 and some non-pharmaceutical containment measures still in place, a substantial proportion of Italian adults tested positive for genetically diversified strains of both RSV subtypes. In view of the upcoming registration of vaccines, establishment of the National RSV surveillance system is urgently needed.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Child , Adult , Humans , Cross-Sectional Studies , Independent Living , Seasons , COVID-19/epidemiology , SARS-CoV-2/genetics , Respiratory Syncytial Virus, Human/genetics
7.
Respir Med Res ; 83: 100990, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36871459

ABSTRACT

This multicenter observational study included 171 COVID-19 adult patients hospitalized in the ICUs of nine hospitals in Lombardy (Northern Italy) from December, 1st 2021, to February, 9th 2022. During the study period, the Delta/Omicron variant ratio of cases decreased with a delay of two weeks in ICU patients compared to that in the community; a higher proportion of COVID-19 unvaccinated patients was infected by Delta than by Omicron whereas a higher rate of COVID-19 boosted patients was Omicron-infected. A higher number of comorbidities and a higher comorbidity score in ICU critically COVID-19 inpatients was positively associated with the Omicron infection as well in vaccinated individuals. Although people infected by Omicron have a lower risk of severe disease than those infected by Delta variant, the outcome, including the risk of ICU admission and the need for mechanical ventilation due to infection by Omicron versus Delta, remains uncertain. The continuous monitoring of the circulating SARS-CoV-2 variants remains a milestone to counteract this pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/epidemiology , Inpatients , Intensive Care Units , Italy/epidemiology
8.
Virus Res ; 324: 199033, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36581046

ABSTRACT

AIMS: To assess influenza viruses (IVs) circulation and to evaluate A(H3N2) molecular evolution during the 2021-2022 season in Italy. MATERIALS AND METHODS: 12,393 respiratory specimens (nasopharyngeal swabs or broncho-alveolar lavages) collected from in/outpatients with influenza illness in the period spanning from January 1, 2022 (week 2022-01) to May 31, 2022 (week 2022-22) were analysed to identify IV genome and were molecularly characterized by 12 laboratories throughout Italy. A(H3N2) evolution was studied by conducting an in-depth phylogenetic analysis of the hemagglutinin (HA) gene sequences. The predicted vaccine efficacy (pVE) of vaccine strain against circulating A(H3N2) viruses was estimated using the sequence-based Pepitope model. RESULTS: The overall IV-positive rate was 7.2% (894/12,393), all were type A IVs. Almost all influenza A viruses (846/894; 94.6%) were H3N2 that circulated in Italy with a clear epidemic trend, with 10% positivity rate threshold crossed for six consecutive weeks from week 2022-11 to week 2022-16. According to the phylogenetic analysis of a subset of A(H3N2) strains (n=161), the study HA sequences were distributed into five different genetic clusters, all of them belonging to the clade 3C.2a, sub-clade 3C.2a1 and the genetic subgroup 3C.2a1b.2a.2. The selective pressure analysis of A(H3N2) sequences showed evidence of diversifying selection particularly in the amino acid position 156. The comparison between the predicted amino acid sequence of the 2021-2022 vaccine strain (A/Cambodia/e0826360/2020) and the study strains revealed 65 mutations in 59 HA amino acid positions, including the substitution H156S and Y159N in antigenic site B, within major antigenic sites adjacent to the receptor-binding site, suggesting the presence of drifted strains. According to the sequence-based Pepitope model, antigenic site B was the dominant antigenic site and the p(VE) against circulating A(H3N2) viruses was estimated to be -28.9%. DISCUSSION AND CONCLUSION: After a long period of very low IV activity since public health control measures have been introduced to face COVID-19 pandemic, along came A(H3N2) with a new phylogenetic makeup. Although the delayed 2021-2022 influenza season in Italy was characterized by a significant reduction of the width of the epidemic curve and in the intensity of the influenza activity compared to historical data, a marked genetic diversity of the HA of circulating A(H3N2) strains was observed. The identification of the H156S and Y159N substitutions within the main antigenic sites of most HA sequences also suggested the circulation of drifted variants with respect to the 2021-2022 vaccine strain. Molecular surveillance plays a critical role in the influenza surveillance architecture and it has to be strengthened also at local level to timely assess vaccine effectiveness and detect novel strains with potential impact on public health.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Hemagglutinins , Influenza A Virus, H3N2 Subtype/genetics , Phylogeny , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Pandemics , Seasons , COVID-19/epidemiology , Epitopes , Italy/epidemiology
9.
Clin Exp Med ; 23(6): 2725-2737, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36522554

ABSTRACT

Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) cause a high burden of disease, particularly in children and the elderly. With the aim to add knowledge on RSV and HMPV infections in Italy, a prospective, multicenter study was conducted by eight centers of the Working Group on Respiratory Virus Infections (GLIViRe), from December 2018-April 2019. Weekly distribution and patients' demographic and clinical data were compared in 1300 RSV and 222 HMPV-positive cases. Phylogenetic analysis of the G-glycoprotein coding region was performed to characterize circulating strains. RSV positivity ranged from 6.4% in outpatients of all ages to 31.7% in hospitalized children; HMPV positivity was 4-1.2% with no age-association. RSV season peaked in February and ended in mid-April: HMPV circulation was higher when RSV decreased in early spring. RSV was more frequent in infants, whereas HMPV infected comparatively more elderly adults; despite, their clinical course was similar. RSV-B cases were two-thirds of the total and had similar clinical severity compared to RSV-A. Phylogenetic analysis showed the circulation of RSV-A ON1 variants and the predominance of RSV-B genotype BA10. HMPV genotype A2c was the prevalent one and presented insertions of different lengths in G. This first multicenter Italian report on seasonality, age-specific distribution, and clinical presentation of RSV and HMPV demonstrated their substantial disease burden in young patients but also in the elderly. These data may provide the basis for a national respiratory virus surveillance network.


Subject(s)
Metapneumovirus , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Infant , Child , Adult , Humans , Aged , Metapneumovirus/genetics , Seasons , Phylogeny , Prospective Studies , Pandemics , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus, Human/genetics
10.
Viruses ; 14(11)2022 10 26.
Article in English | MEDLINE | ID: mdl-36366449

ABSTRACT

The quantification and molecular characterization of the AdV genome in urban wastewater samples (WWSs) collected weekly at a wastewater treatment plant (WWTP) in Milan from 1 January 2021 (week 2021-01) to 1 May 2022 (week 2022-17) were performed. The concentration of the AdV genome was graphically compared with the AdV positive rate observed in the respiratory/gastrointestinal specimens from individuals hospitalized with acute respiratory/gastrointestinal infections collected from one of the major hospitals in Milan in the same time series. An increase in the AdV circulation in WWSs was seen from November 2021, peaking in March 2022 and overlapped with an increase in the AdV positive rate in respiratory/fecal samples from individuals hospitalized with acute respiratory/gastrointestinal infections. The molecular characterization of the hexon hypervariable region of loop 1 of AdV revealed the presence of the species F type 41 in WWSs collected from February 2022 to April 2022. The wastewater surveillance of AdV can provide crucial epidemiological characteristics regarding AdV, particularly where no clinical surveillance is ongoing. The increase in the AdV circulation in Milan both in WWSs and clinical samples temporally overlapped with the outbreak of severe acute pediatric hepatitis observed in Europe and needs to be better investigated.


Subject(s)
Adenoviridae Infections , Respiratory Tract Infections , Humans , Child , Adenoviridae/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring , Acute Disease
12.
Vaccines (Basel) ; 10(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36016246

ABSTRACT

(1) Background: Over the last few years, there has been growing interest in the whole genome sequencing (WGS) of rapidly mutating pathogens, such as influenza viruses (IVs), which has led us to carry out in-depth studies on viral evolution in both research and diagnostic settings. We aimed at describing and determining the validity of a WGS protocol that can obtain the complete genome sequence of A(H3N2) IVs directly from clinical specimens. (2) Methods: RNA was extracted from 80 A(H3N2)-positive respiratory specimens. A one-step RT-PCR assay, based on the use of a single set of specific primers, was used to retro-transcribe and amplify the entire IV type A genome in a single reaction, thus avoiding additional enrichment approaches and host genome removal treatments. Purified DNA was quantified; genomic libraries were prepared and sequenced by using Illumina MiSeq platform. The obtained reads were evaluated for sequence quality and read-pair length. (3) Results: All of the study specimens were successfully amplified, and the purified DNA concentration proved to be suitable for NGS (at least 0.2 ng/µL). An acceptable coverage depth for all eight genes of influenza A(H3N2) virus was obtained for 90% (72/80) of the clinical samples with viral loads >105 genome copies/mL. The mean depth of sequencing ranged from 105 to 200 reads per position, with the majority of the mean depth values being above 103 reads per position. The total turnaround time per set of 20 samples was four working days, including sequence analysis. (4) Conclusions: This fast and reliable high-throughput sequencing protocol should be used for influenza surveillance and outbreak investigation.

13.
Diagnostics (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35741293

ABSTRACT

For diagnosing SARS-CoV-2 infection and for monitoring its spread, the implementation of external quality assessment (EQA) schemes is mandatory to assess and ensure a standard quality according to national and international guidelines. Here, we present the results of the 2020, 2021, 2022 EQA schemes in Lombardy region for assessing the quality of the diagnostic laboratories involved in SARS-CoV-2 diagnosis. In the framework of the Quality Assurance Programs (QAPs), the routinely EQA schemes are managed by the regional reference centre for diagnostic laboratories quality (RRC-EQA) of the Lombardy region and are carried out by all the diagnostic laboratories. Three EQA programs were organized: (1) EQA of SARS-CoV-2 nucleic acid detection; (2) EQA of anti-SARS-CoV-2-antibody testing; (3) EQA of SARS-CoV-2 direct antigens detection. The percentage of concordance of 1938 molecular tests carried out within the SARS-CoV-2 nucleic acid detection EQA was 97.7%. The overall concordance of 1875 tests carried out within the anti-SARS-CoV-2 antibody EQA was 93.9% (79.6% for IgM). The overall concordance of 1495 tests carried out within the SARS-CoV-2 direct antigens detection EQA was 85% and it was negatively impacted by the results obtained by the analysis of weak positive samples. In conclusion, the EQA schemes for assessing the accuracy of SARS-CoV-2 diagnosis in the Lombardy region highlighted a suitable reproducibility and reliability of diagnostic assays, despite the heterogeneous landscape of SARS-CoV-2 tests and methods. Laboratory testing based on the detection of viral RNA in respiratory samples can be considered the gold standard for SARS-CoV-2 diagnosis.

14.
EClinicalMedicine ; 46: 101331, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35360146

ABSTRACT

Background: Influenza is one of the most common respiratory viral infections worldwide. Numerous vaccines are used to prevent influenza. Their selection should be informed by the best available evidence. We aimed to estimate the comparative efficacy and safety of seasonal influenza vaccines in children, adults and the elderly. Methods: We conducted a systematic review and network meta-analysis (NMA). We searched the Cochrane Library Central Register of Controlled Trials, MEDLINE and EMBASE databases, and websites of regulatory agencies, through December 15th, 2020. We included placebo- or no vaccination-controlled, and head-to-head randomized clinical trials (RCTs). Pairs of reviewers independently screened the studies, abstracted the data, and appraised the risk of bias in accordance to the Cochrane Handbook for Systematic Reviews of Interventions. The primary outcome was laboratory-confirmed influenza. We also synthesized data for hospitalization, mortality, influenza-like illness (ILI), pneumonia or lower respiratory-tract disease, systemic and local adverse events (AEs). We estimated summary risk ratios (RR) using pairwise and NMA with random effects. This study is registered with PROSPERO, number CRD42018091895. Findings: We identified 13,439 citations. A total of 231 RCTs were included after screening: 11 studies did not provide useful data for the analysis; 220 RCTs [100,677 children (< 18 years) and 329,127 adults (18-60 years) and elderly (≥ 61 years)] were included in the NMA. In adults and the elderly, all vaccines, except the trivalent inactivated intradermal vaccine (3-IIV ID), were more effective than placebo in reducing the risk of laboratory-confirmed influenza, with a RR between 0.33 (95% credible interval [CrI] 0.21-0.55) for trivalent inactivated high-dose (3-IIV HD) and 0.56 (95% CrI 0.41-0.74) for trivalent live-attenuated vaccine (3-LAIV). In adults and the elderly, compared with trivalent inactivated vaccine (3-IIV), no significant differences were found for any, except 3-LAIV, which was less efficacious [RR 1.41 (95% CrI 1.04-1.88)]. In children, compared with placebo, RR ranged between 0.13 (95% CrI 0.03-0.51) for trivalent inactivated vaccine adjuvanted with MF59/AS03 and 0.55 (95% CrI 0.36-0.83) for trivalent inactivated vaccine. Compared with 3-IIV, 3-LAIV and trivalent inactivated adjuvanted with MF59/AS03 were more efficacious [RR 0.52 (95% CrI 0.32-0.82) and RR 0.23 (95% CrI 0.06-0.87)] in reducing laboratory-confirmed influenza. With regard to safety, higher systemic AEs rates after vaccination with 3-IIV, 3-IIV HD, 3-IIV ID, 3-IIV MF59/AS03-adj, quadrivalent inactivated (4-IIV), quadrivalent adjuvanted (4-IIV MF59/AS03-adj), quadrivalent recombinant (4-RIV), 3-LAIV or quadrivalent live attenuated (4-LAIV) vaccines were noted in adults and the elderly [RR 1.5 (95% CrI 1.18-1.89) to 1.15 (95% CrI 1.06-1.23)] compared with placebo. In children, the systemic AEs rate after vaccination was not significantly higher than placebo. Interpretation: All vaccines cumulatively achieved major reductions in the incidence of laboratory-confirmed influenza in children, adults, and the elderly. While the live-attenuated was more efficacious than the inactivated vaccine in children, many vaccine types can be used in adults and the elderly. Funding: The directorate general of welfare, Lombardy region.

15.
Microorganisms ; 10(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35336187

ABSTRACT

INTRODUCTION: The ongoing coronavirus disease 19 (COVID-19) outbreak involves the pediatric population, but to date, few reports have investigated the circulation of variants among children. MATERIAL AND METHODS: In this retrospective study, non-hospitalized pediatric patients with SARS-CoV-2-positive nasopharyngeal swabs (NPS) were enrolled at the Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste (Italy), from November 2020 to January 2022. SARS-CoV-2 variants were identified by in vitro viral isolation, amplification, automatic sequencing of the receptor binding domain (RBD) of the SARS-CoV-2 spike coding gene, and subsequent next-generation sequencing. The growth curves of the isolated strains were defined in vitro by infecting Vero-E6 cells and quantifying the viral load in the supernatants up to 72 h post-infection by qRT-PCR. The neutralization activity of sera obtained from a COVID-19 vaccinated subject, recovered (2020) patient, vaccinated and recovered (2021) patient, and seronegative subject was assessed by microneutralization assay against the different variants. RESULTS: In total, 32 SARS-CoV-2-positive children, 16 (50%) females, with a median age of 1.4 years (range: 1 day-13 years), were enrolled. The D614G amino acid substitution was detected in all isolated and amplified viral strains. Of the 32 isolates, 4 (12.5%) carried a nonsynonymous nucleotide mutation leading to the N439K (3/4), lineage B.1.258 (∆H69/∆V70), and S477N (1/4) substitution. In 7/32 (21.8%) isolates, amino acid substitutions allowed the identification of a delta variant, lineage B.1.617.2-AY.43, and in 1/32 (3.1%), the Omicron strain (B.1.1.529.BA1) was identified. The growth curves of the B.1, B.1.258 (∆H69/∆V70), B.1.617.2-AY.43, and B.1.1.529.BA1 variants did not show any significant differences. A reduction in the serum neutralizing activity against B.1.258 (∆H69/∆V70) only in a vaccinated subject (1.7-fold difference), against B.1.617.2-AY.43 in a vaccinated subject and in recovered patients (12.7 and ≥2.5-fold differences, respectively), and against B.1.1.529.BA1 variant (57.6- and 1.4-fold differences in vaccinated and in vaccinated and recovered patients) were observed compared to the B.1 variant. CONCLUSIONS: SARS-CoV-2 variants carrying the B.1.258 (∆H69/∆V70) and S477N substitutions were reported here in a pediatric population for the first time. Although the growth rates of the isolated strains (B.1.258, B.1.617.2-AY.43, B.1.1.529.BA1) did not differ from the B.1 variant, neutralizing activity of the sera from vaccinated subjects significantly decreased against these variants. Attention should be devoted to the pediatric population to prevent the spread of new SARS-CoV-2 variants in an unvaccinated and predominantly naive population.

16.
J Neurovirol ; 28(1): 113-122, 2022 02.
Article in English | MEDLINE | ID: mdl-34997473

ABSTRACT

Here we described the virological and serological assessment of 23 COVID-19 patients hospitalized and followed up in Milan, Italy, during the first wave of COVID-19 pandemic. Nasopharyngeal (NPS), anal swabs, and blood samples were collected from 23 COVID-19 patients, at hospital admission, and periodically up to discharge, for a median time of 20 days (3-83 days). RNA was isolated and tested for SARS-CoV-2 by qRT-PCR; anti-SARS-CoV-2 IgM and IgG antibody titers were evaluated in serum samples by ELISA. SARS-CoV-2 genome was detected in the NPS swabs of the 23 patients, at the admission, and 8/19 (42.1%) were still positive at the discharge. Anal swabs were positive to SARS-CoV-2 RNA detection in 20/23 (86.9%) patients; 6/19 (31.6%) were still positive at discharge. The mean time of RNA negative conversion was 17 days (4-36 days) and 33 days (4-77 days), for NPS and anal swabs, respectively. SARS-CoV-2-RNA was detected in the blood of 6/23 (26.1%) patients. Thirteen/23 (56.5%) and 17/23 (73.9%) patients were seropositive for IgM and IgG, respectively, at the admission, and the median IgM and IgG levels significantly (p < 0.05) increased after 13 days. Although the limited cohort size, our report provides evidence that SARS-CoV-2 is shed through multiple routes, with important implications in healthcare settings.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Immunoglobulin M , Pandemics , RNA, Viral/genetics , SARS-CoV-2
17.
Influenza Other Respir Viruses ; 16(3): 481-491, 2022 05.
Article in English | MEDLINE | ID: mdl-34921508

ABSTRACT

INTRODUCTION: Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract illness in young children and can also cause influenza-like illness (ILI). Here we investigated the epidemiological features of RSV infection in pediatric ILI cases in Lombardy (a region in Northern Italy accounting nearly 10 million inhabitants) from 2014-2015 to 2020-2021 winter seasons. MATERIAL AND METHODS: Data for this study were retrieved and statistically analyzed from the database of virological influenza surveillance of the regional reference laboratory for Lombardy within the Italian influenza surveillance network (InfluNet). RESULTS: RSV accounted for nearly 19% of pediatric ILI with a risk of infection nearly two-fold greater than that of individuals ≥15 years. RSV positivity rate increased to 28% considering 0-5 years old children. Although in children ≤5 years the risk of infection from influenza viruses resulted nearly two-fold higher than the risk of RSV infection, the age group 4-6 months and 7-12 months showed a five-fold greater risk of infection from RSV than from influenza. Children ≤5 years of age with pre-existing underlying health conditions had a nearly five-fold greater risk of getting RSV infection than otherwise healthy 0-5 years old children. RSV was identified in ILI cases <15 years of age in all considered winter seasons except in the 2020-2021 season. DISCUSSION: Sentinel surveillance of ILI allowed us to identify groups at higher risk of RSV and influenza infection and to define the start, duration, timing, and intensity of the RSV and influenza community circulation. This surveillance approach can be implemented to assess the RSV circulation and impact in a real-time manner.


Subject(s)
Influenza, Human , Orthomyxoviridae , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Influenza, Human/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Seasons
18.
Ann Vasc Surg ; 82: 325-333, 2022 May.
Article in English | MEDLINE | ID: mdl-34902464

ABSTRACT

BACKGROUND: To investigate the presence of genetic material of viral agents and the serum level of inflammatory cytokines in patients submitted to carotid endarterectomy having vulnerable versus stable atherosclerotic plaques. METHODS: Data of patients consecutively submitted to carotid endarterectomy for a significant stenosis from July 2019 to December 2019 were prospectively collected. The genetic material of Epstein-Barr (EBV), CitoMegalo (CMV), Herpes Simplex (HSV), Varicella-Zoster (VZV) and Influenza (IV) Viruses was searched in the patient's plaques, both in the "mid" of the plaque and in an adjacent lateral portion of no-plaque area. The serum levels of TNF-α, IL-1ß, IL-6, IL10 and CCL5 were determined. The obtained results were then correlated to the histologic vulnerability of the removed carotid plaque. P values < 0.05 were considered statistically significant. RESULTS: Data of 50 patients were analyzed. A vulnerable plaque was found in 31 patients (62%). The genome of CMV, HSV, VZV and IV was not found in any of the vascular samples, while the EBV genome was found in the "mid" of 2 vulnerable plaques, but not in their respective control area. Eighty-two percent of patients who did not receive anti-IV vaccination (23/28) had vulnerable carotid plaque, compared with 36% of vaccinated patients (8/22, P = 0.001). Serum levels of TNF-α and IL-6 were higher in patients with a vulnerable plaque compared to patients with a stable plaque (73.6 ± 238.2 vs. 3.9 ± 13.1 pg/ml, P= 0.01, and 45.9 ± 103.6 vs. 10.1 ± 25.3 pg/ml, P= 0.01, respectively), independent of comorbidities, viral exposure or flu vaccination. CONCLUSIONS: The EBV genome was found in the "core" of 2 vulnerable carotid plaques, but not in their respective adjacent control. Influenza vaccination was associated with a lower incidence of carotid plaque vulnerability. Serum levels of TNF-α and IL-6 were higher in patients with a vulnerable plaque compared to patients with a stable plaque.


Subject(s)
Carotid Stenosis , Cytokines , Cytomegalovirus Infections , Endarterectomy, Carotid , Interleukin-6 , Plaque, Atherosclerotic , Tumor Necrosis Factor-alpha , Carotid Stenosis/diagnostic imaging , Cytokines/blood , Cytomegalovirus Infections/diagnosis , Cytomegalovirus Infections/genetics , Endarterectomy, Carotid/adverse effects , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/genetics , Humans , Inflammation/diagnosis , Influenza, Human/diagnosis , Influenza, Human/genetics , Interleukin-6/blood , Plaque, Atherosclerotic/genetics , Treatment Outcome , Tumor Necrosis Factor-alpha/blood
19.
Influenza Other Respir Viruses ; 16(3): 417-428, 2022 05.
Article in English | MEDLINE | ID: mdl-34866344

ABSTRACT

BACKGROUND: In response to the coronavirus disease (COVID-19) outbreak that unfolded across Europe in 2020, the World Health Organisation (WHO) called for repurposing existing influenza surveillance systems to monitor COVID-19. This analysis aimed to compare descriptively the extent to which influenza surveillance systems were adapted and enhanced and how COVID-19 surveillance could ultimately benefit or disrupt routine influenza surveillance. METHODS: We used a previously developed framework in France, Germany, Italy, Spain and the United Kingdom to describe COVID-19 surveillance and its impact on influenza surveillance. The framework divides surveillance systems into seven subsystems and 20 comparable outcomes of interest and uses five evaluation criteria based on WHO guidance. Information on influenza and COVID-19 surveillance systems were collected from publicly available resources shared by European and national public health agencies. RESULTS: Overall, non-medically attended, virological, primary care and mortality surveillance were adapted in most countries to monitor COVID-19, although community, outbreak and hospital surveillance were reinforced in all countries. Data granularity improved, with more detailed demographic and medical information recorded. A shift to systematic notification for cases and deaths enhanced both geographic and population representativeness, although the sampling strategy benefited from the roll out of widespread molecular testing. Data communication was greatly enhanced, contributing to improved public awareness. CONCLUSIONS: Well-established influenza surveillance systems are a key component of pandemic preparedness, and their upgrade allowed European countries to respond to the COVID-19 pandemic. However, uncertainties remain on how both influenza and COVID-19 surveillance can be jointly and durably implemented.


Subject(s)
COVID-19 , Influenza, Human , COVID-19/epidemiology , Europe/epidemiology , France/epidemiology , Germany , Humans , Influenza, Human/epidemiology , Italy/epidemiology , Pandemics , Seasons , Spain/epidemiology , United Kingdom
20.
Sci Total Environ ; 806(Pt 4): 150816, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34627901

ABSTRACT

Wastewater-based viral surveillance was proposed as a promising approach to monitor the circulation of SARS-CoV-2 in the general population. The aim of this study was to develop an analytical method to detect SARS-CoV-2 RNA in urban wastewater, and apply it to follow the trends of epidemic in the framework of a surveillance network in the Lombardy region (Northern Italy). This area was the first hotspot of COVID-19 in Europe and was severely affected. Composite 24 h samples were collected weekly in eight cities from end-March to mid-June 2020 (first peak of the pandemic). The method developed and optimized, involved virus concentration using PEG centrifugation, and one-step real-time RT-PCR for analysis. SARS-CoV-2 RNA was identified in 65 (61%) out of 107 samples, and the viral concentrations (up to 2.1 E + 05 copies/L) were highest in March-April. By mid-June, wastewater samples tested negative in all the cities corresponding to the very low number of cases recorded in the same period. Viral loads were calculated considering the wastewater daily flow rate and the population served by each wastewater treatment plant, and were used for inter- city comparison. The highest viral loads were found in Brembate, Ranica and Lodi corresponding to the hotspots of the first peak of pandemic. The pattern of decrease of SARS-CoV-2 in wastewater was closely comparable to the decline of active COVID-19 cases in the population, reflecting the effect of lock-down. This study tested wastewater surveillance of SARS-CoV-2 to follow the pandemic trends in one of most affected areas worldwide, demonstrating that it can integrate ongoing virological surveillance of COVID-19, providing information from both symptomatic and asymptomatic individuals, and monitoring the effect of health interventions.


Subject(s)
COVID-19 , Wastewater , Communicable Disease Control , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Wastewater-Based Epidemiological Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...